

Il ruolo dell'immunità cellulo-mediata

Mario Salvatore Clerici

Vaccino HIV: il ruolo della immunità cellulomediata

Mario (Mago) Clerici, M.D.

Chair of Immunology Head, Department of Physiopathology and Transplants University of Milano

Head, Department of Molecular Medicine and Imaging for Rehabilitation and Scientific Director IRCCS SM Nascente, Fondazione Don C Gnocchi, Milano

Rimini, Aprile 2019

Why Do We Need A Vaccine For HIV?

FDA-Approved Antiretroviral Drugs

NRTI

- Zidovudine
- Didanosine
- Zalcitabine
- Stavudine
- Lamivudine
- Abacavir
- Tenofovir
- Emtricitabine

NNRTI

- Nevirapine
- Delavirdine
- Efavirenz
- Etravirine

ΡI

- Saquinavir
- Ritonavir
- Indinavir
- Nelfinavir
- Amprenavir
- Lopinavir
- Atazanavir
- Fosamprenavir
- Tipranavir
- Darunavir

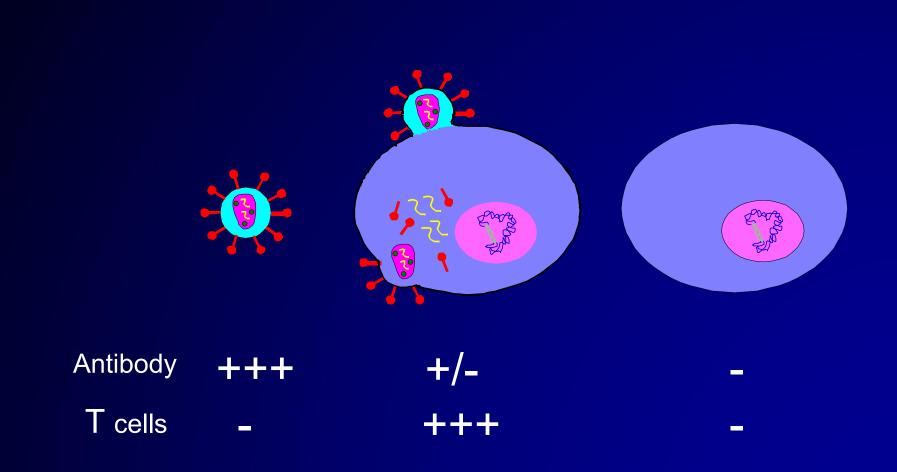
Fusion Inhibitor

Enfuvirtide (T-20)

Entry Inhibitor

- Maraviroc
- **Integrase Inhibitor**
 - Raltegravir

Combinations

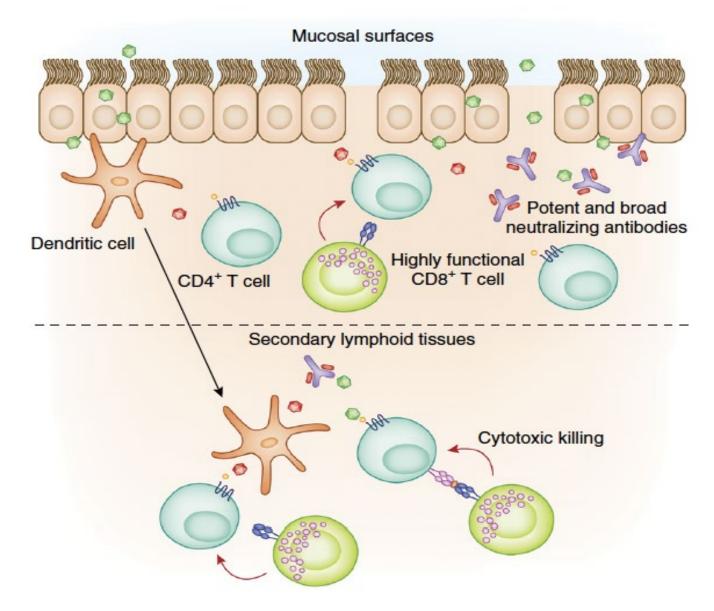

6 available, combining 2 or 3 drugs In the light of results from PrEP and PEP trials, and reduced drug toxicity, why should we invest in vaccine development?

- The drugs are still not free of toxicity
- An effective vaccine is most cost-effective solution
- Identification of those infected or at risk is often challenging
- Easiness of use
 - PrEP and PEP are only as good as the ability to deploy them
 - Vaccine is given once and lasts a lifetime

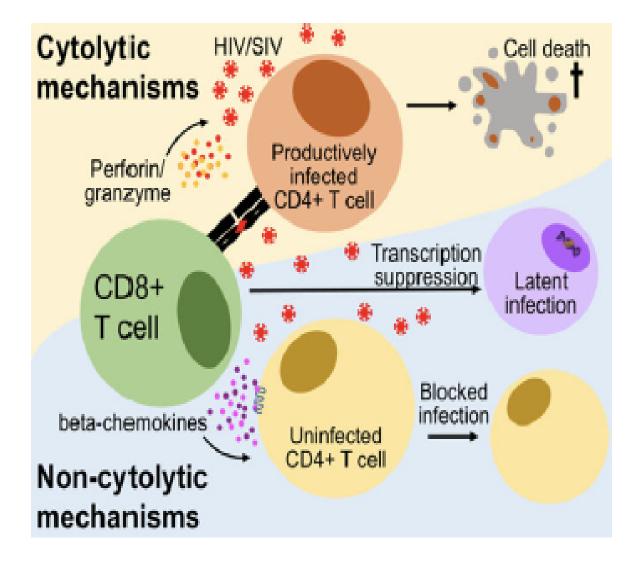
Still more than 5000 infections a day globally

WHAT SHOULD AN HIV VACCINE DO?

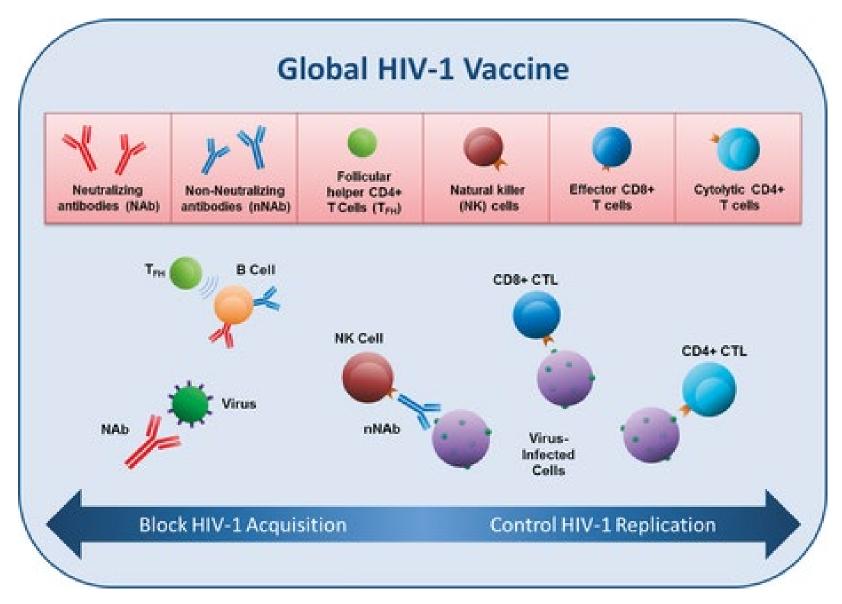
The Role of Vaccine-Inducible Immune Responses in Different Phases of HIV Infection



WHAT SHOULD AN HIV VACCINE DO?


More than 90% of HIV infections are sexually transmitted: an efficient preventive vaccine MUST elicit mucosal antibodies (IgA) as well as mucosal and systemic CTL

Vaccines that aim at eliciting systemic immune responses alone are not likely to be enough: once HIV is in the blood the game is lost


Requirements for vaccine-induced protection and control

Mechanisms of CD8+ T cell-mediated suppression of HIV replication

A global approach to HIV-1 vaccine development

Immunological Reviews

Volume 254, Issue 1, pages 295-304, 16 JUN 2013 DOI: 10.1111/imr.12073 http://onlinelibrary.wiley.com/doi/10.1111/imr.12073/full#imr12073-fig-0001

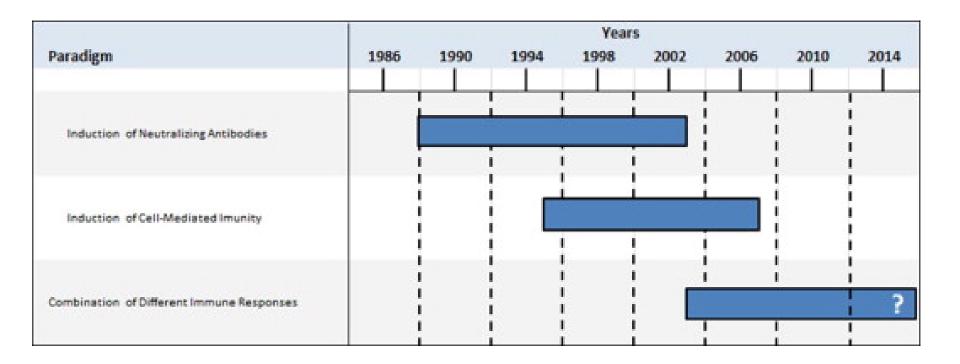
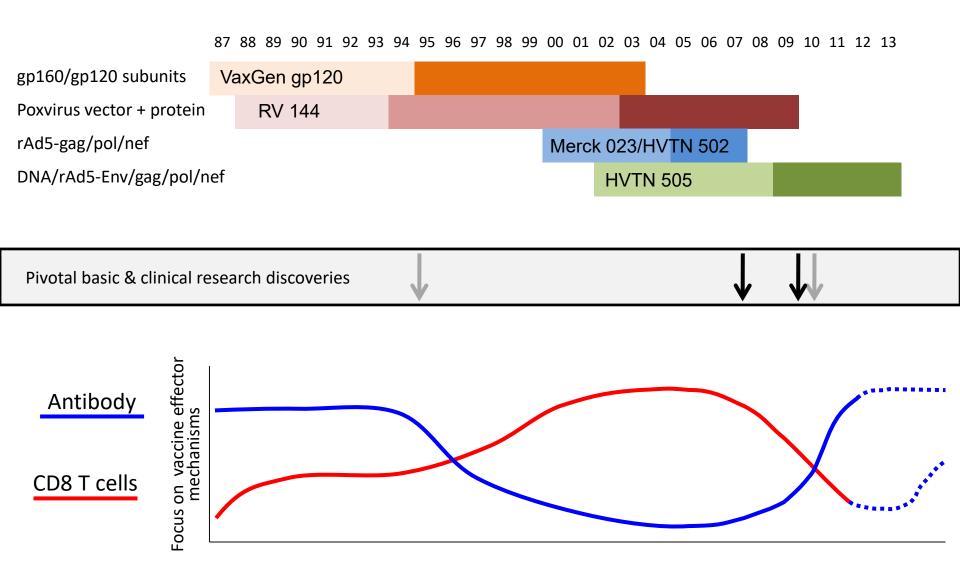
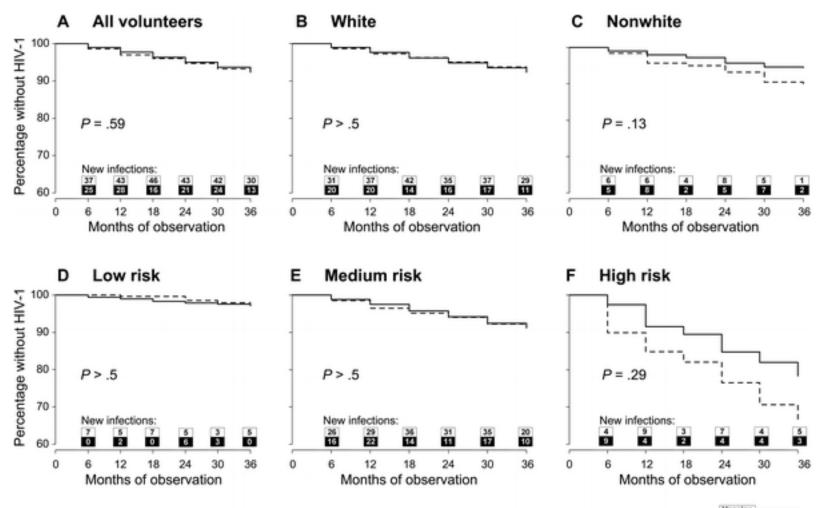


Fig. 1 Evolution of HIV vaccine paradigms and clinical trials.


José Esparza

A brief history of the global effort to develop a preventive HIV vaccine


Vaccine Volume 31, Issue 35 2013 3502 - 3518 http://dx.doi.org/10.1016/j.vaccine.2013.05.018

WHAT HAVE WE DONE?

Brief History of HIV Vaccine Efficacy Trials

The Journal of Infectious Diseases 2005;191:654–665 Placebo-Controlled Phase 3 Trial of a Recombinant Glycoprotein 120 Vaccine to Prevent HIV-1 Infection The rgp120 HIV Vaccine Study Groupa

Vaccine Placebo - - - - -

HIV clinical trials, rationale design and outcome

Study	Regimen	Participants	Aim	Outcome	References
VAX004 (United States, Netherlands)	<i>r</i> gp120 B/B	MSM, high-risk women	bnAbs	No prevention of HIV infection	[61,62]
VAX003 (Thailand)	<i>r</i> gp120 B/E	Drug users	bnAbs	No prevention of HIV infection	[63,64]
Step/HVTN502 (USA)	<i>r</i> Ad5 HIV-1 gag/pol/nef B	MSM, high-risk women	CD8+ T-cells	Increased infection risk	[67]
Phambili/HVTN503 (South Africa)	rAd5 HIV-1 gag/pol/nef B	Heterosexual men, women	CD8+ T-cells	Increased infection risk	[68]
HVTN505	* DNA/rAd5	MSM, NA/rAd5 transgender women		No infection risk, no efficacy	[69]
RV144 (Thailand)	* ALVAC-HIV/AIDSVAX B/E gp120 in alum	High risk men and women	Ab and T-cells	31.2% vaccine efficacy	[7]

r: recombinant; MSM: men who have sex with men; bnAbs: broadly neutralizing antibodies; *: prime-boost regimen.

Step Study (HVTN 502)

IFNγ-secreting HIV-specific T cells in 77% of vaccinees; HIV-specific CD4+ T cells in 41% of vaccinees

The vaccine was highly immunogenic for inducing HIVspecific CD8+ T cells

The HTVN 502 (HIV gag/pol/nef) vaccine did not reduce plasma viremia after infection; HIV-1 incidence was higher in the vaccine-treated group.

HVTN 505 (DNA/rAd5)

Designed to elicit HIV-specific, multifunctional responses in CD4+ and CD8+ T cells and antibodies to envelopes of the major circulating strains

Efficacy Trial of the HVTN 505 Preventive Vaccine NEJM October 2013

The HVTN 505 clinical trial was interrupted because an an interim review showed that that <u>the vaccine did not</u> <u>prevent HIV infection nor reduce viral load among</u> <u>vaccine recipients who became infected with HIV</u>

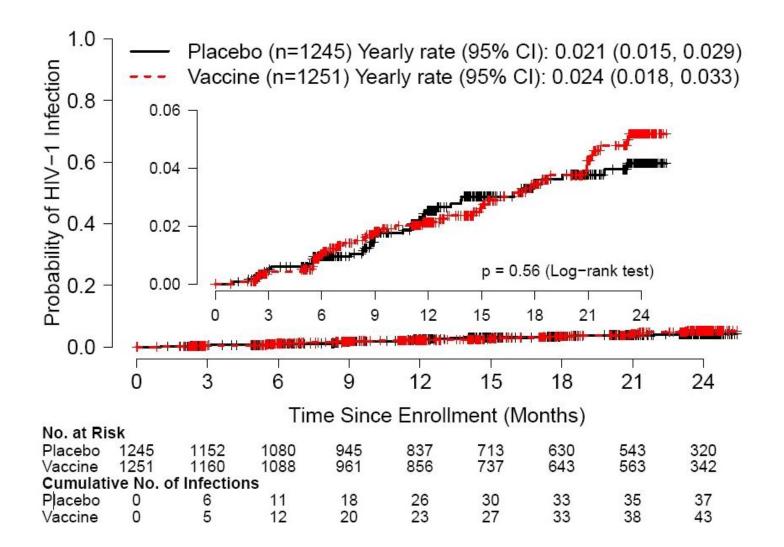
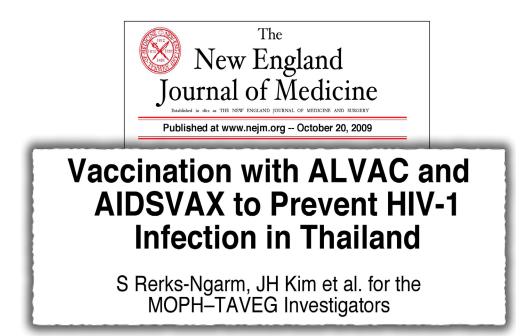
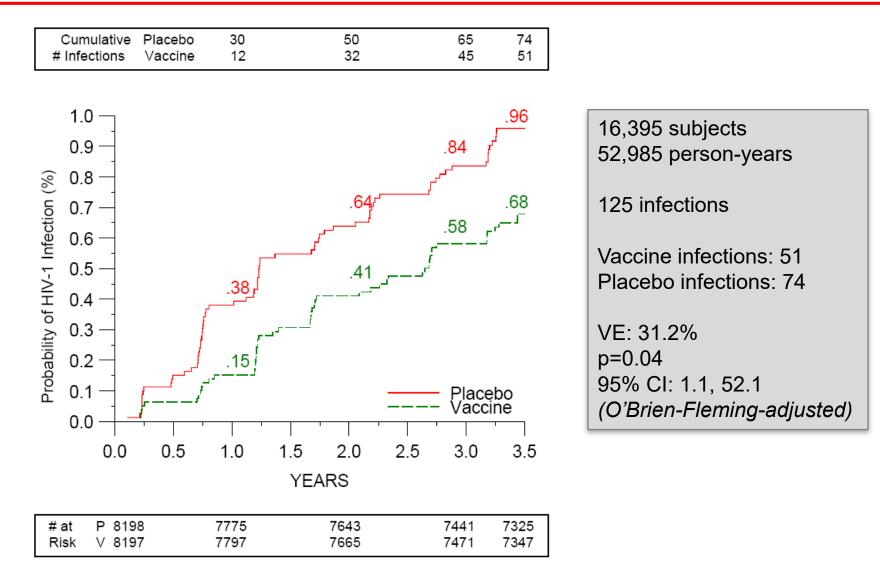



Figure S19: Cumulative incidence of MITT HIV-1 infection based on updated data through August 23, 2013.

RV144: First Signal of HIV Vaccine Efficacy


ALVAC®-HIV (vCP1521)

Canarypox expressing HIV-1 subtype E gp120 and HIV-1 subtype B gag and protease

AIDSVAX[®] B/E

HIV gp120 subtype E and B

Effect on Acquisition (MITT Analysis)

31% reduction in infection incidence in vaccine arm of study

HIV-1 vaccine efficacy trials: immune correlates

OT LISK Immune correlates of Immune correlates of Overall vaccine Increased risk decreased Immune correlates of immune control post									
Vaccine regimen	Location/risk population	efficacy	of infection	vaccine efficacy ^a	decreased HIV risk	infection	Virus sieve	Host genetic correlates	
VAX003 (Phase III) Protein/ Alum (CRF01_AE/Clade B Env) ⁵²	Thailand/injection drug users	No efficacy	No	No	No ⁵²	Νο	No ^{118,b}	n/d	
VAX004 (Phase III) Protein/ Alum (Clade B Envs) ⁵³	USA/MSM/high risk women	No efficacy	No	No	Yes ADCVI, CD4 Blocking, Tier 1 NAb	n/d	No ^{160,161}	Yes Fcy receptor Illa genotype (VV genotype) ¹²⁵	
STEP HVTN502 (Phase IIb) Ad5 Vector (Clade B Gag/Pol Nef) ⁵⁴	North/South America, Australia, Caribbean/MSM and High Risk Hetero- sexual Men and Women	No efficacy ^c	Yes	n/d	No	Yes T cell breadth/ magnitude, Lower VL	Yes ⁶⁷	Yes HLA alleles (B*27, B*57, B*58:01), Lower viral load	
Phambili HVTN503 (Phase IIb) Ad5 Vector (Clade B Gag/Pol Nef) ⁵⁷	South Africa/Hetero-sexual Men and Women	No efficacy ^d	n/d	n/d	n/d	n/d	n/d	n/d	
RV144 (Phase III) ALVAC vector (Clade B Gag/Pro + CRF01_ A/E Env) + Protein/ Alum (CRF01_AE/B Env) ⁵⁰	Thailand/Community	31% efficacy	No	Yes Plasma Env IgA ^{71,74}	Yes V1V2 IgG, Linear V2, V1V2 IgG3, Interactions (ADCC, Avidity, Tier 1 NAb, IgA), CD4 ⁺ T cell Polyfunction, Cytokines ^{71-73,75,111}	n/d	Yes ^{85,162}	Yes HLA A*02 allele ¹²⁶ : FcyRIIC -118 L allele ¹¹⁴ : DQB1*06 ¹¹³	
HVTN505 (Phase IIb) DNA/ Ad5 (Clade A, B, C Env, Clade BGag/Pol) ⁶⁰	USA/MSM and TG, Ad5 seronegative, Circumcised	No efficacy ^c	No	No	Yes CD8 ⁺ Env T-cell Polyfunction ^e	n/d	Yes ⁶⁶	n/d	

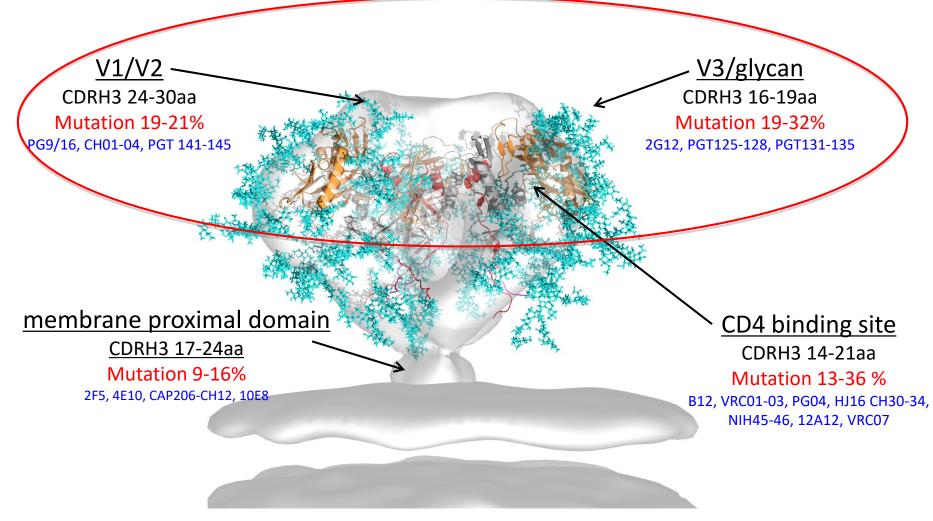
The six HIV-1 vaccine efficacy studies are listed alongside their corresponding outcomes for vaccine efficacy, immune correlates of risk, and associations of vaccine efficacy with virus sieve analysis and host genetics. Findings with positive outcomes for vaccine efficacy are shaded in blue and findings with negative outcomes for vaccine efficacy are shaded in gray. MSM = Men who have sex with Men; TG = transgender; ADCVI = antibody-dependent, cell-mediated virus inhibition; Tier 1 NAb = neutralizing antibodies that target easy to neutralize viruses (ie not circulating transmitted/founder viruses); V = Valine, FcγRIIIa is encoded by alleles that confer either a phenylalanine (F) or valine (V) at amino acid position 158.

^aNo increased risk of infection compared to the placebo group.

^bNo significant virus sieve that correlated with acquisition. An atypical genetic sieve in the V2 region was identified but also did not correlate with acquisition.

^cEfficacy futility determined at first interim analysis after full enrollment.

^dVaccinations discontinued: unblinded early based on STEP result.

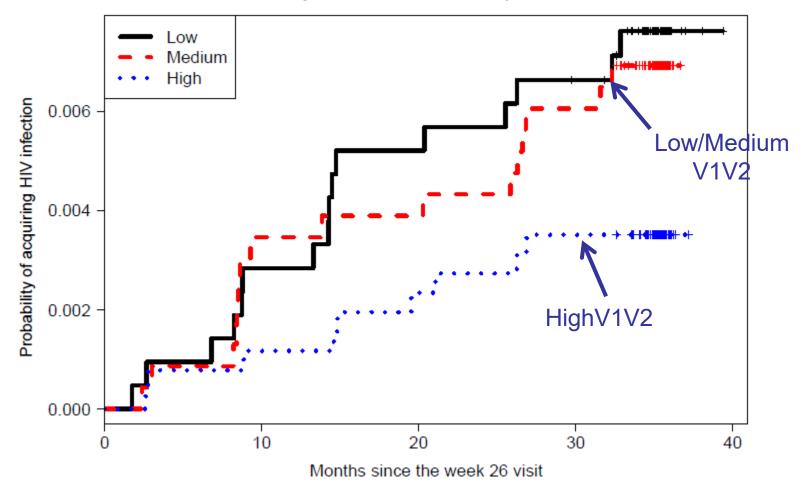

^eFrahm N, McElrath MJ et al. (2016) Research for Prevention Meeting, Chicago, IL.

10.1371/journal.pone.0075665

Plasma IgG to Linear Epitopes in the V2 and V3 Regions of HIV-1 gp120 Correlate with a Reduced Risk of Infection in the RV144 Vaccine Efficacy Trial

IgG antibodies that bind to V1/V2 recombinant protein correlated inversely with infection rate

Sites of Vulnerability for HIV Neutralization



Haynes *et al.* (2012) *Nat.Biot.* 5: 423-433 Kwong and Mascola *et al.* (2013) *Immunity.* In Press

Long CDRH3 loops and minimal Somatic Hypermutation (SHM)

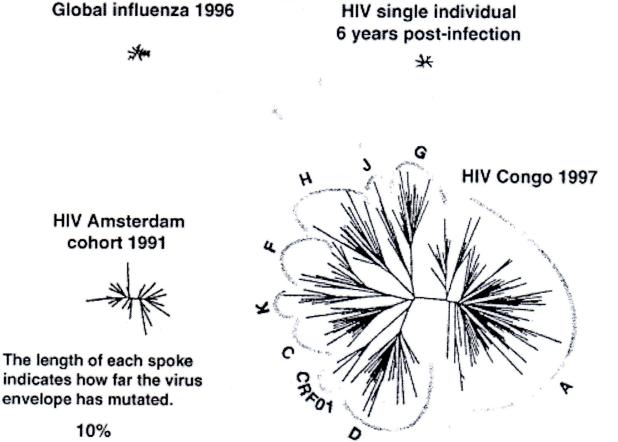
Cumulative Infection Rates

V1V2-gp70 Scaffold Assay

Thai Vaccine ('RV144') what's next?

Several small-scale clinical trials in southern Africa, started January 2015 and ongoing

A large-scale trial (HVTN 702) launched in October 2016, using a similar regimen to RV144, but made for South Africa; the trial is ongoing


SO, DO WE HAVE A VACCINE? NO

How do you induce V1-V2 Ab?
Why are they induced only in some vaccinees?
How do the V1-V2 Ab work?
Are they enough?

WHY DONT WE HAVE A VACCINE?

Hypervariablity of HIV

Fig. 2. Genetic diversity of human immunodeficiency virus envelope glycoprotein gp120 compared with that of H3N2 influenza virus haemagglutinin [<u>36</u>].

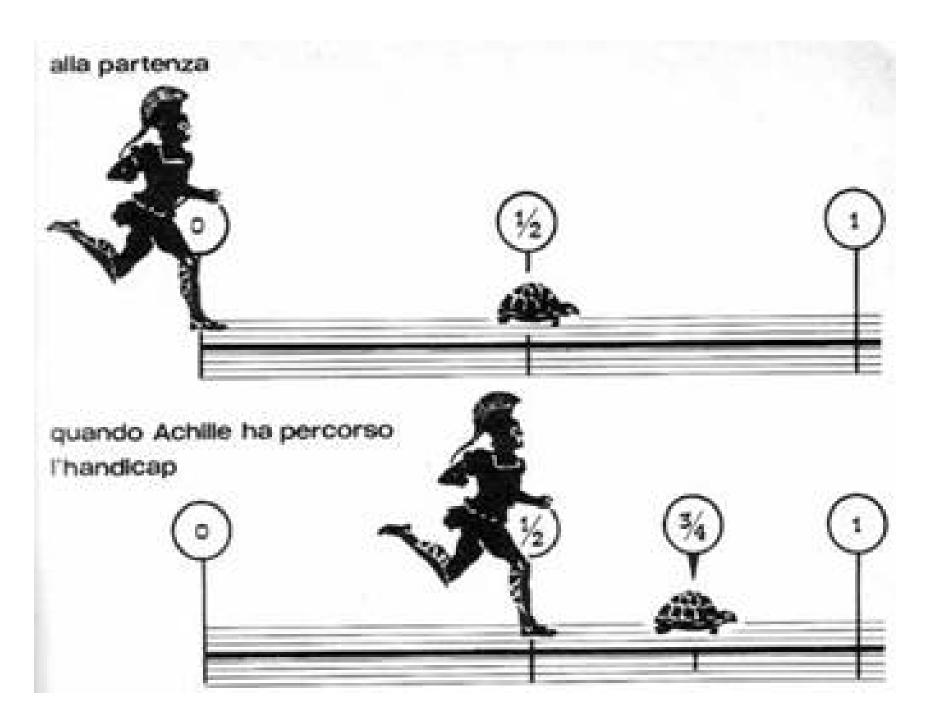
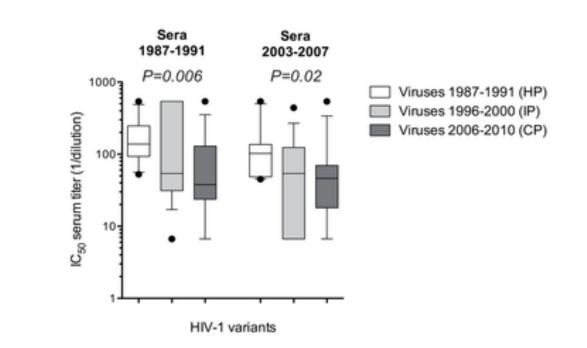
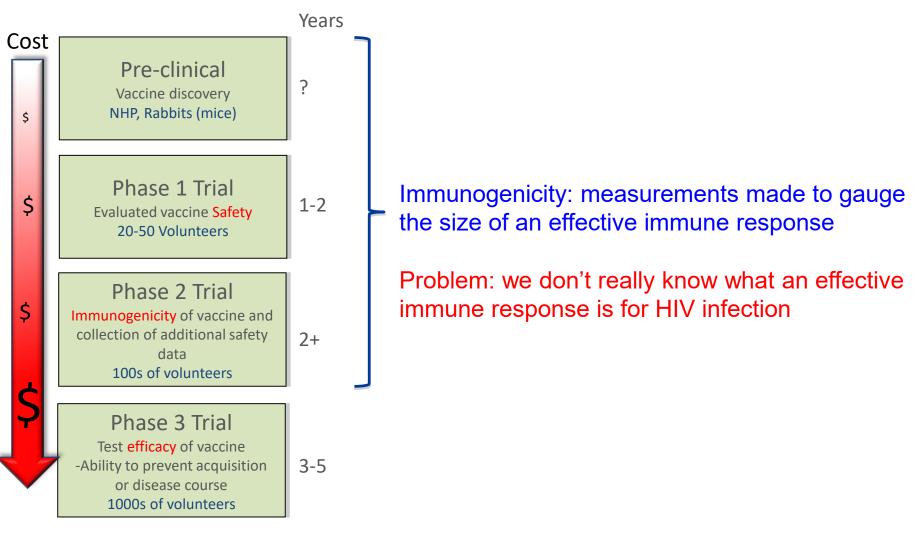



Figure 1. Enhanced resistance of clade B early/transmitted HIV-1 variants to neutralization by polyclonal sera over the course of the epidemic.

в

А

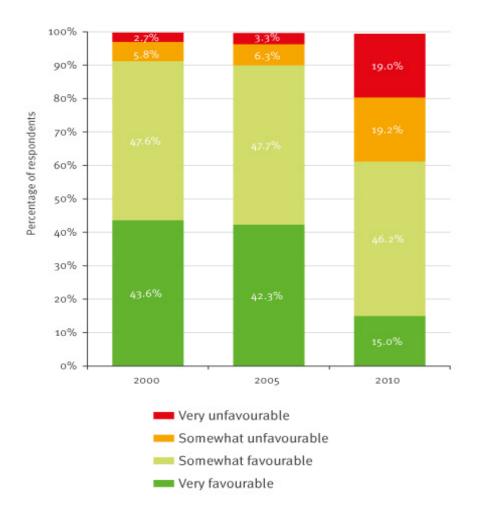
	% of viruses neutralized IC50 ≥ 20		Chi ² test for	% of viruses neutralized IC50 ≥ 100			Chi ² test for	Key :	> 90% 60-90% 30-60%	
Sera	1987-1991 (HP)	1996-2000 (IP)	2006-2010 (CP)	trend	1987-1991 (HP)	1996-2000 (IP)	2006-2010 (CP)	trend		1-30%
1987-1991	100.0	93.3	92.9	NS	63.6	40.0	35.7	NS		
2003-2007	100.0	73.3	85.7	NS	54.6	33.3	14.3	P=0.03		


Bouvin-Pley M, Morgand M, Moreau A, Jestin P, et al. (2013) Evidence for a Continuous Drift of the HIV-1 Species towards Higher Resistance to Neutralizing Antibodies over the Course of the Epidemic. PLoS Pathog 9(7): e1003477.

PATHOGENS

doi:10.1371/journal.ppat.1003477

http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1003477


Development Pathway for HIV Vaccines

Thai trial≈ \$120 million

FIGURE 1

Attitudes towards vaccination in general in the population aged 18–75 years, INPES surveys, France, 2000, 2005, 2010

INPES: French National Institute for Prevention and Health

Eurosurveillance, 18: 44-51, 2017